Tuesday, 12 February 2019

How to select multiple columns from a spark data frame using List[String]


Lets see how to select multiple columns from a spark data frame.
Create Example DataFrame
spark-shell --queue= *;

To adjust logging level use sc.setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.0
Spark context available as sc 
SQL context available as sqlContext.

scala>  val sqlcontext = new org.apache.spark.sql.SQLContext(sc)
sqlcontext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4f9a8d71  

scala> val BazarDF = Seq(
     | ("Veg", "tomato", 1.99),
     | ("Veg", "potato", 0.45),
     | ("Fruit", "apple", 0.99),
     | ("Fruit", "pineapple", 2.59),
     | ("Fruit", "apple", 1.99)
     | ).toDF("Type", "Item", "Price")
BazarDF: org.apache.spark.sql.DataFrame = [Type: string, Item: string, Price: double]

scala> BazarDF.show()
+-----+---------+-----+
| Type|     Item|Price|
+-----+---------+-----+
|  Veg|   tomato| 1.99|
|  Veg|   potato| 0.45|
|Fruit|    apple| 0.99|
|Fruit|pineapple| 2.59|
|Fruit|    apple| 1.99|
+-----+---------+-----+

Now our example dataframe is ready.
Create a List[String] with column names.
scala> var selectExpr : List[String] = List("Type","Item","Price")
selectExpr: List[String] = List(Type, Item, Price)

Now our list of column names is also created.
Lets select these columns from our dataframe.
Use .head and .tail to select the whole values mentioned in the List()

scala> var dfNew = BazarDF.select(selectExpr.head,selectExpr.tail: _*)
dfNew: org.apache.spark.sql.DataFrame = [Type: string, Item: string, Price: double]

scala> dfNew.show()
+-----+---------+-----+
| Type|     Item|Price|
+-----+---------+-----+
|  Veg|   tomato| 1.99|
|  Veg|   potato| 0.45|
|Fruit|    apple| 0.99|
|Fruit|pineapple| 2.59|
|Fruit|    apple| 1.99|
+-----+---------+-----+

I will also explaine How to select multiple columns from a spark data frame using List[Column] in next post.